میهن داکیومنت بزرگترین مرجع و مرکز دانلود پایان نامه (متن کامل فرمت ورد) فروش پایان نامه - خرید پایان نامه (کاردانی ، کارشناسی)همه رشته ها
حقوق اقتصاد مدیریت روانشناسی ریاضی تربیت بدنی کامپیوتر نرم افزار و سخت افزار عمران معماری برق صنایع غذایی علوم اجتماعی هنر علوم سیاسی فیزیک مکانیک حسابداری

تبلیغات کلیکی - افزایش رتبه گوگل

اگهی رایگان

پایان نامه آشنايي با شبكه هاي عصبي مصنوعي


کد محصول : 10001646 نوع فایل : word تعداد صفحات : 94 صفحه قیمت محصول : 9000 تومان تعداد بازدید 921

فهرست مطالب و صفحات نخست


آشنايي با شبكه هاي عصبي مصنوعي

فصل 1 : مقدمه
1-1    انسان و كامپيوتر
انسان ها از كامپيوترها باهوش ترند. چرا چنين گفته مي‌شود؟
درست است كه بعضي از اعمالي را كه ما به سختي انجام مي دهيم يك كامپيوتر به سرعت و به راحتي انجام مي دهد ،مانند جمع چندصد عدد ، اما اين مطلب باعث نمي شود كه ما يك كامپيوتر را باهوشتر از انسان بدانيم چون اين سيستم هرگز قادر نمي باشد كه اعمالي را كه نياز يه استدلال  دارد و يا حل آنها از طريق  شهودي و حدس و گمان مي باشد را به طور مطلوب انجام دهد. شايد بهتر است بگوييم آن‌هاموجودات منطقي اي هستند و تنها اعمال منطقي را به خوبي انجام مي دهند.
مسئله ديگر شايد اين باشد كه يك كامپيوتر مي تواند بعضي كارها را كه ما در مدت زمان قابل ملاحظه اي انجام مي دهيم را در زمان بسيار كوتاه تري انجام مي دهد.ويا بعضي از اطلاعات را پس از گذشت ماه ها ويا سالها به خاطر مي آورد .
به همين دليل از كامپيوتر ها انتظار داريم در زمينه هاي ديگر نيز چنين رفتاري را از خود نشان دهند و چون نمي توانند تمام انتظارات ما را بر آورده كنند ما مايوس مي شويم.در واقع اين هدفي است كه دست اندركاران هوش مصنوعي دنبال مي كنند اما هنوز پس از گذشت 30 سال تحقيقات گسترده نمي توانند اين ادعا را داشته باشند كه به چنين كامپيوتري دست پيدا   كرده اند.
هدف هوش مصنوعي را مي توان در اين جمله خلاصه كرد كه مي خواهد در نهايت به كامپيوترهايي دست يابد كه اغلب در فيلم هاي سينمايي مشاهده مي شود، ماشين‌هاي بسيار توانمند تر از انسان – هدفي كه بسيار از دنياي واقعي به دوراست . دنيايي كه اغلب به خاطراشتباهات فاحش كامپيوترها هزينه‌هاي بسيار زيادي را متحمل مي شود .
اگر به داخل يك كامپيوتر نگاه كنيم چيزي جز تعدادي تراشه هاي الكترونيكي ، مدارها ،مقاومتها و ساير قطعات الكترونيكي  نخواهيم ديد. اما اگر به درون مغز نگاه كنيم ، به هيچ صورت چنين ساختاري را مشاهده نخواهيم كرد. بررسي اوليه ما چيزي جزمجموعه اي گره خورده از ماده‌اي خاكستري رنگ نشان نمي دهد. بررسي بيش‌تر و روشن‌ مي كند كه مغز از اجزايي ريز تشكيل شده است . ليكن اين اجزاء به شيوه‌اي بي نهايت پيچيده‌، مرتب شده‌اند و هز جزء به هزاران جزء ديگر متصل است. شايد اين تفاوت در شيوه ساختار ، علت اصلي اختلاف بين مغز و كامپيوتر است. كامپيوترها طوري طراحي شده‌ اند كه يك عمل را بعد از عمل ديگر باسرعت بسيار زياد انجام دهند . ليكن مغز ما با تعداد اجزاي بيش‌تر اما با سرعتي بسيار كم‌تر كار مي‌كند . در حالي كه سرعت عمليات در كامپيوتر‌ها به ميليون‌ها محاسبه در ثانيه بالغ مي شود، سرعت عمليات در مغز تقريباً بيش‌تر از ده بار در ثانيه نمي‌باشد. ليكن مغز در يك لحظه با تعداد زيادي اجزاء به طور هم زمان كار مي كند، كاري كه از عهده كامپيوتر بر نمي‌آيد . كامپيوتر ماشيني سريع اما پياپي كار است در حالي كه مغز شديداً ساختاري موازي دارد. كامپيوترها مي توانند عملياتي را كه با ساختار آن‌ها سازگاري دارند به خوبي انجام دهند. براي مثال شمارش و جمع‌كردن اعمالي پياپي  است كه يكي بعد از ديگري انجام مي شود . ليكن ديدن و شنيدن، اعمالي شديداً موازي‌اند كه در آن‌ها داده‌هاي متضاد و متفاوت هر كدام باعث اثرات و ظهور خاطرات متفاوتي در مغز  مي شوند وتنها از طريق تركيب مجموعه اين عوامل متعدد است كه مغز مي‌تواند چنين اعمال شگفتي را انجام دهد .
نتيجه‌اي كه مي توان گرفت اين است كه مسائل مورد نظر ما شديداً خاصيت موازي دارند. اين مسائل نيازمند پردازش حجم زيادي از اطلاعات متفاوت هستند كه بايد در تقابل با يكديگر به حل مسأله بيانجامد.
نتيجه مهم آن كه سرعت عامل مهمي نيست . آنچه مهم است موازي بودن است و مغز به خوبي براي اين كار مهيا شده است . شيوه برخورد روش محاسباتي شبكه‌هاي عصبي، تسخير اصول راهبردي است كه زير بناي فرآيند مغز براي پاسخ‌گويي به اين سؤالات و به كارگيري آن‌ها در سيستم‌هاي كامپيوتري است .
در مدل‌سازي سيستم‌هاي اصلي مغز، بايد راه كاري را بيابيم كه بيش‌تر با ساختار موازي مغز سازگاري داشته باشد نه با ساختار پي‌درپي آن .
به هر صورت ساختار طبيعتاً موازي سيستم هاي شبكه هاي عصبي آن ها را مناسب به كارگيري در ماشين هاي موازي مي كند. كه مي تواند مزاياي بيش تري از نظر سرعت  و قابليت اطمينان داشته باشد.
يكي از بارزترين ويژگي‌هاي مغز توان فراگيري آن مي باشد. مغز مي‌تواند به خود آموزش دهد . يادگيري از طريق مثال همان شيوه‌اي است كه توسط آن اطفال زبان را فرا مي‌گيرند . نوشتن، خوردن و آشاميدن را مي آموزند و مجموعه معيارها و نكات اخلاقي را كسب مي كنند . چنين تحولي درسيستم‌هاي كامپيوتري متعارف مشاهده نمي شود . كامپيوترها معمولاً از برنامه‌هاي از پيش نوشته شده‌اي پيروي مي كنند كه قدم به قدم دستورات مشخصي را در كليه مراحل عملياتي به آن ها مي دهند هر مرحله از كار بايدبه وضوح شرح داده شود. روشن است كه انسان اين گونه عمل نمي كند.زيرا براي نوشتن چنين برنامه اي بايد ساعت ها وقت صرف كنيم و با دقت موضوع خود را به صورت بر نامه قابل فهم كامپيوتر  بنويسيم .كه اين كار مشكلات خود را دارا مي باشد.حال آيا بهتر نيست كه به جاي برنامه هاي كامپيوتري ،كامپيوتر را رها كنيم كه خود از طريق مشاهده مثال ها آن  كار را فرا گيرد؟ البته امكان دارد كه اين كامپيوتر نيز در ابتدا داراي  BUG باشد وگاه اشتباه كند ،ليكن به تدريج به اشتباه خود پي خواهد برد و آنها را تكرار نخواهد كرد.
1ـ2ـ ساختار مغز
مغز انسان از واحدهاي  كو چكي به نام نرون  تشكيل شده است.مي‌دانيم كه مغز تقريباً داراي 1010 واحد پايه به نام نرون است و هر نرون تقريباً به 104 نرون ديگر اتصال دارد.
نرون عنصر اصلي مغز است و به تنهايي مانند يك واحد پردازش منطقي عمل مي كند . نرون‌ها دو نوع هستند . نرون‌هاي داخلي مغز كه در فاصله‌هاي حدود 100 ميكرون به يكديگر متصل اند و نرون‌هاي خارجي كه قسمت‌هاي مختلف مغز را به يكديگر و مغز را به ماهيچه‌ها و اعضاي حسي را به مغز متصل مي‌كنند . نحوه عمليات نرون بسيار پيچيده است و هنوز در سطح ميكروسكوپي چندان شناخته شده نيست، هر نرون بسيار پيچيده است و هنوز در سطح ميكروسكوپي چندان شناخته شده نيست ، هر چند قوانين پايه آن نسبتاً روشن است .هر نرون ورودي‌هاي متعددي را پذيراست كه با يكديگر به طريقي جمع مي‌شوند . اگر در يك لحظه ورودي‌هاي فعال نرون به حد كفايت برسد نرون نيز فعال شده و آتش مي‌كند . در غير اين صورت نرون به صورت غير فعال وآرام باقي مي ماند. نمايشي از ويژگي هاي عمده نرون در شكل 1-1 آمده است. بدنه نرون سوما  ناميده مي شود . به سوما رشته‌هاي نامنظم طولاني متصل است كه به آنها دندريت  مي‌‌گويند  . قطر اين رشته‌ها اغلب از يك ميكرون نازك‌تر است و اشكال شاخه‌اي پيچيده‌اي دارند.
دندريت‌ها نقش اتصالاتي را دارند كه ورودي ها را به نرون ها مي رساند . اين سلول ها مي توانند
 
شكل 1-1 مشخصات اصلي يك نرون بيولوژيك.
عملياتي پيچيده‌تر از عمليات جمع ساده را بر ورودي هاي خود انجام دهند، ليكن عمل جمع ساده را مي‌توان به عنوان تقريب قابل قبولي از عمليات واقعي نرون به حساب آورد.
يكي از عناصر عصبي متصل به هسته نرون آكسون  ناميده مي شود. اين عنصر بر خلاف دندريت از نظر الكتريكي فعال است و به عنوان خروجي نرون عمل مي‌كند.‌اكسون‌ها هميشه‌ در روي خروجي سلول‌ها مشاهده مي شوند . ليكن اغلب در ارتباط‌هاي بين نروني غايب‌اند. اكسون وسيله‌اي غير  خطي است كه در هنگام تجاوز پتانسيل ساكن داخل هسته از حد معيني پالس ولتاژي را به ميزان يك هزارم ثانيه، به نام پتانسيل فعاليت، توليد مي كند . اين پتانسيل فعاليت در واقع يك سري از پرش هاي سريع ولتاژ است. شكل 1-2 اين حالت « همه يا هيچ » را نشان مي هد.

 
شكل 1-2 ورودي هاي نرون بايد از آستانه معيني تجاوز كندتا نرون بتواند كنش كند.

رشته اكسون در نقطه تماس معيني به نام سينا پس قطع مي شود و در اين مكان به دندريت سلول ديگر وصل مي گردد. در واقع اين تماس به صورت اتصال مستقيم نيست بلكه از طريق ماده شيميايي موقتي صورت مي‌گيرد . سيناپس پس از آن كه پتانسيل آن از طريق پتانسيل هاي فعاليت دريافتي از طريق آكسون به اندازه كافي افزايش يافته از خود ماده شيميايي به نام منتقل كننده عصبي  ترشح مي‌كنند.
منتقل كننده عصبي ترشح شده درشكاف بين اكسون و دندريت پخش مي شود و باعث مي گردد كه دروازه‌هاي موجود در دندريت‌ها فعال شده و باز شود و بدين صورت شارژ شده وارد دندريت شوند . اين جريان يون است كه باعث مي‌شود پتانسيل دندريت افزايش يافته و باعث يك پالس ولتاژ در دندريت شود كه پس از آن منتقل شده و وارد بدن نرون ديگر مي شود .
يك نرون خود به تنهايي مي‌تواند داراي ورودي هاي سيناپسي متعددي در روي دندريت‌هاي خود باشد و ممكن است باخروجي هاي سيناپسي متعددي به دندريت‌هاي نرون‌هاي ديگر وصل شود.
1-2-1 يادگيري در سيستم‌هاي بيولوژيك   
تصور مي شود يادگيري هنگامي صورت مي‌گيرد كه شدت اتصال يك سلول و سلول ديگر در محل سيناپس‌ها اصلاح مي گردد. شكل 1-3 ويژگي‌هاي مهم سيناپس را با جزئيات بيش تر نشان مي دهد. به نظر مي‌رسد كه اين مقصود از طريق ايجاد سهولت بيش‌تر در ميزان آزاد شدن ناقل شيميايي حاصل مي گردد. اين حالت باعث مي شود كه دروازه‌هاي بيش‌تري روي دندريت‌هاي سمت مقابل باز شود و به اين صورت باعث افزايش ميزان اتصال دو سلول شود . تغيير ميزان اتصال نرون‌ها به صورتي كه باعث تقويت تماس‌هاي مطلوب شود از مشخصه‌هاي مهم در مدل‌هاي شبكه‌هاي عصبي است .
 
شكل 1-3 اجزائ مختلف يك سيناپس

1-3 تفاوت ها
همچنين ديدم كه ساختار مغز به گونه‌اي است  انجام اين فعاليت‌ها را به آساني امكان‌پذير مي سازد و در عوض در زمينه‌هاي ديگر كارآيي مغز را محدود مي كند. روند تكامل مغز متأثر از فعاليت هايي بوده كه اهميت بيش تري داشته است، از آن‌جايي كه توانايي دين و شنيدن صدا در انسان از توانايي جمع كردن دقيق اعداد اهميت بيش‌تري داشته و اين امر باعث تكامل اين جنبه مغز شده است. مغز داراي ساختاري شديداً موازي كه در آن تعداد زيادي واحدهاي محاسباتي ساده به صورت مشترك انجام فعاليت را به عهده دارند، به جاي اين كه تمام بار فعاليت را بر دوش يك واحد سريع قرار دهند، اين تقسيم كار پيامدهاي مثبت ديگري نيز دارد، چون تعداد زيادي نرون در يك زمان درگير فعاليت هستند سهم هر يك از نرون‌ها چندان حائز اهميت نيست . بنابراين اگر يكي راه خطا رود نتيجه آن تأثير چنداني بر ديگران نخواهد داشت . اين نحوه توزيع   كار كه اصطلاحاً پردازش توزيع شده ناميده مي شود، داراي اين خاصيت است كه لغزش هاي احتمالي در جاي جاي سيستم پردازي تا اندازه‌اي قابل چشم‌پوشي مي باشد. در واقع مغز با توجه به توانايي يادگيري مي تواند نقصان هميشگي يكي از نرون‌هاي خود را با وارد كردن نرون‌هاي ديگر جبران كند. توان انجام فعاليت در  حالي كه فقط تعدادي از نرون‌ها به درستي كار مي كنند را در محافل محاسباتي تحمل خطا مي‌گويند، زيرا كه سيستم، مثلاً مغز ، مي‌تواند بدون ايجاد خروجي هاي بي معني خطاها را تحمل كند . اين يكي از ويژگي‌هاي بارز مغز است ، كامپيوترها در ساختار بسيار متفاوت اند .
كامپيوترها در ساختار بسيار متفاوت‌اند. به جاي استفاده از ميليون‌ها واحد پردازش اطلاعات نسبتاً كند و بسيار متصل به يكديگر مانند مغز، از يك يا چند واحد پردازش بسيار سريع استفاده مي‌كنند كه مي توانند ميليون‌ها محاسبه را در هر ثاينه انجام دهند.  اين توانايي و سرعت كامپيوترها را در انجام عمليات ساده و تكراري مانند جمع اعداد بسيار كارآمد مي‌كند ولي آن‌ها را در  انجام عملياتي چون بينايي كه  نياز به پردازش انواع مختلف داده به صورت موازي دارد ناتوان مي‌سازد . آن ها همچنين به علت عدم توانايي در توزيع فعاليت نسبت به خطا توانايي چشم‌پوشي و اغماض ندارند. چنانچه واحد پردازش كامپيوتر از كار بيفتد داستان خاتمه يافته است .
اين مسائل نهايتاً موجب تمايلات جاري به ايجاد كامپيوترهاي متفاوت شده است . اين كامپيوترها از اصولي پيروي مي كنند كه پديده تكامل درطول ميليون‌ها سال شكل داده است، و آن چنين است ، استفاده از عناصر ساده و اتصال تنگاتنگ عناصر و انجام كار مشترك توسط انبوهي از عناصرمي باشد.
نتيجه گيري
همان گونه كه در اين فصل گفته شد سيستم مغز يك سيستم موازي مي باشد .در حل يك مسئله سرعت حل ملاك نيست بلكه آن چيزي كه مهم مي باشد پردازش به صورت موازي است.مغز از سلولهاي كوچك به نام نرون تشكيل شده است كه هر گاه ميزان ورودي آنها از طريق دندريت ها به حد كافي برسد نرون آتش كرده از اكسون پالسي ارسال مي شود. ارتباط از طريق نقاط اتصال شيميايي به نام سيناپس صورت مي گيرد.

فصل   2 : نگرش كلي به شبكه هاي عصبي مصنوعي
2-1  تعريف شبكه هاي عصبي
آنچه در ادامه عنوان مي گردد، تعريف عملي و تاحدي عمومي از ابزاري است كه بعداً آن  را مطالعه خواهيم كرد. در قسمت هاي باقيماندة كتاب، اين تعريف تصحيح و تخصصي خواهد گرديد.
شبكه هاي عصبي مصنوعي، ساختاري(شبكه اي) است متشكل ازتعدادي واحد(نرون هاي مصنوعي) كه در داخل شبكه به هم وصل شده اند. هر واحد داراي يك مشخصه ورودي/خروجي(I /o) مي باشد و محاسبه يا عملي جزئي را اجرا مي كند. خروجي هر واحد، با توجه به مشخصة (I /o) آن ، اتصالات درونيش به ساير واحدها و(احتمالاً) ورودي هاي خارجي تعيين مي گردد. از آنجا كه آموزش دستي شبكه امكان پذير است، از اين رو شبكه معمولاً كاركردي كلي از يك حالت يا حالت هاي بيشتري از آموزش را به دست مي آورد.
  ANNمتشكل از يك شبكه نيست ، بلكه خانواده اي متشكل از شبكه هاي گوناگون مي باشد. عمل يا عملكرد كلي شبكه هاي عصبي مصنوعي ، توسط توپولوژي شبكه، خصوصيات نرون منفرد و تاكتيك يادگيري و داده هاي آموزش معين مي شود.
به منظور كاربردي شدن ، يك ANN مي بايستي ابزارهايي براي ارتباط با دنياي خارج داشته باشد. با اين وجود نيازي به تعريف فوق نيست؛ به طور نمونه، خصوصيات واحد ورودي / خروجي (I/o) ، بسيار ساده است (و بين همه واحدها مشترك است) و تعداد واحدها كاملاً زياد است. توجه نماييد كه تعريف، ما را وادار مي سازد كه ميان يك واحد تنها و يك شبكه تمايز قايل شويم . در نهايت، ساختارهاي محاسباتي كه در اين تحقيق شرح مي دهيم، ممكن است با شماري از راه هاي غير بيولوژيكي هم قابل انجام باشند كه بيشترين اين نمونه ها در ميان عناصر الكترونيكي است؛ بنابراين ، اغلب عنوان‌«مصنوعي» قابل قبول است
2-2  مفاهيم اساسي شبكه هاي عصبي
موارد زير ، جنبه هاي كليدي محاسبات عصبي مي باشند:
 همان گونه كه تعريف بخش 2-1 نشان مي دهد، مدل كلي محاسباتي ، شامل اتصالات دروني قابل تغيير مجدد از عناصر ساده يا واحدهاست. شكل 1.2 دو شبكه فرضي با مقياس كوچك را نشان مي دهد كه در آن واحدها به صورت دايره هاي و اتصالات دروني به وسيلة كمان هايي نشان داده شده اند. شكل 1.2 (الف) يك تاكتيك اتصال دروني غير بازگشتي را نشان ميدهد كه شامل هيچ مسير اتصال دروني بسته اي نيست. به نمايش گروهي واحدهايي كه در لايه ها قرار گرفته اند، توجه نماييد. در مقابل، شكل 1.2 (ب) شبكه اي با تاكتيك اتصال دروني بازگشتي را نمايان مي سازد كه در آن انعطاف پذيري اتصالات دروني اختياري اين امكان را ميسر مي سازد كه مسيرهاي حلقة بسته (پس خورد) وجود داشته باشد. اين تاكتيك اجازه مي دهد كه شبكه در مقايسه با تاكتيك (حلقه ـ باز) شكل 1.2 (الف) ديناميك زماني بسيار پيچيده تري را نشان دهد. همچنين ، توجه نماييد كه توپولوژي هاي شبكه ، ممكن است ديناميك يا استاتيك باشد. در نهايت ، توجه كنيد كه در شكل 1.2 بعضي واحدها به صورت مستقيم با دنياي بيرون در ارتباط اند، در حالي كه سايرين «مخفي» يا دروني هستند.
 
شكل 2-1 توپولوژي هاي شبكه هاي عصبي مصنوعي
                           
توجه كنيد كه نمايش ترسيمي ، به ه9مراه واحدهيي كه به صورت گره نمايش داده شده اند و اتصالات دروني محسوس جهت دار كه به صورت كمان هايي نشان داده شده اند، عملكرد مفيدي به منظور درك توپولوژي است.
 واحدهاي منفرد، هر يك ايفا كننده عملكردي موضعي مي باشند و شبكه كلي با تصالات دروني واحدها،, عملي مطابق آن شبكه را نمايش مي دهد. تحليل اين عمليات مگر به واسطة آموزش يا آزمايش هاي نمونه، اغلب دشوار است. علاوه براين، كاربردها معمولاً ، از طريق مشخصات ، عملكرد مورد نياز را مشخص مي كنند. اين وظيفه طراح ANN است كه پارامترهاي شبكه را كه اين مشخصات را برآورده مي سازد، معين كند.
 يك معيار كليدي يادگيري اطلاح الگوهاي ارتباط عناصر دروني براساس تابعي از داده هاي آموزش است. به عبارت ديگر، دانش سيستم ، تجربه يا آموزش به شكل اتصالات داخلي شبكه، ذخيره مي گردند.
 به منظور قابل استفاده بودن ، سيستم هاي عصبي بايد توانايي ذخيرة اطلاعات را داشته باشند(به عبارت ديگر،آنها بايد«آموزش پذير» باشند.) سيستم هاي عصبي به شكل مورد انتظار آموزش مي يابند تا بعداً در زماني كه الگوي جديدي به منظور تشخيص يا طبقه بندي به آنها عرضه شود، همواره رفتاري صحيح ارائه دهند.
بنابراين، هدف در مرحلة آموزش شبكه ، گسترش يك ساختار دروني است كه شبكه را قادر سازد تا الگوهاي جديد و مشابه را به طرز صحيحي مشخص يا طبقه بندي كند. هر دو روش آموزش ، با نظارت و بدون نظارت را مورد توجه قرار مي دهيم.
 شبكه عصبي، يك سيستم ديناميكي است؛ حالات آن (مثلاً ، خروجي هاي هر واحد و شدت اتصالات دروني ) در پاسخ به ورودي هاي خارجي يا يك حالت اوليه (گذرا) با زمان تغيير مي يابد.
2-3   معرفي اصطلاحات و علائم قراردادي
اصطلاحات كليدي
با نمايش فهرستي كوتاه از مفاهيم برجسته ، مبحث را شروع مي كنيم:
سيستم هاي تطبيقي1: سيستمي كه قابليت سازگار كردن عملكردش (معمولاً پارامتري) با افزايش تقاضا يا قابليت سازگاري با محيط هاي كاري نامعين را دارا است.
الگوريتم: يك روش يا رويه به منظور رسيدن به يك هدف يا راه حل است.
ساختار: تتشكيلات سخت افزاري يا نرم افزاري است.
طبقه بندي2: قابليت نسبت دادن ورودي اعمالي به يك طبقه است.
تقاطع1: پروسه اي است كه در الگوريتم هاي ژنتيك به منظور شبيه سازي توليد مثل جنسي به كار برده مي شود.
شاخص2 : چيزهايي هستند كه يك ويژگي از يك شيء يا موقعيتي را مشخص مي كنند.
منطق فازي3: يك توسعه از منطق قطعي است كه در آن مقادير صحت به مقادير دودويي محدود نمي شوند.
تعميم : توانايي جوابگويي به مثال هاي بيشتر ، برخلاف تخصيص است؛ رفتار شبكه اي كه ورودي هارا نه صرفاً از مجموعه آموزش(h)  به كار مي برد.
اكتشافي4: يك قانون تجربي است كه براي حل كردن مسائلي به كار برده مي شود؛ اما حل كردن مساله اي را تضمين نمي كند.
برگرداني: معين كردن ورودي از روي خروجي داده شده و مدل سيستم است.
شبكه: ادغامي از موجوديت هايي است كه در داخل به هم متصل شده اند.
جستجو: مساله اي موجود در همه جاست كه در آن بايد يك فضاي جستجو، يا زير فضا، جستجو وارزيابي شود.
توپولوژي: ساختار يك شبكه است.
آموزش : شبيه يادگيري است.
واحد: عنصر «هسته اي» از يك ANN است؛ ابزار يك نگاشت موضعي است.
Vlsi: مدارات مجتمع با مقياس بسيار بزرگ است (وسايل ساخته شده از سيليكن) معمولاً توانايي هاي پردازش يا حافظه را افزايش مي دهد.
2-4 كاربردهاي محاسبات عصبي
خصوصيات مسائلي كه كاربرد ANN در حل آنها مناسب مي باشد
پياده سازي ساختارهاي محاسباتي سيستم هاي بيولوژيكي مي تواند منجر به ايجاد الگوهاي محاسباتي بهتري براي گروههاي معيني از مسائل شود. از آن جمله، گروهي از مسائل سخت NP ، كه شامل مسائل نشانه گذاري، مسائل جدول بندي، مسائل جستجو و ساير مسائل برآورد قيود1 مي باشد؛ گروهي از مسائل تشخيص الگو/ موضوع، كه در مفاهيم بصري و گفتاري قابل ملاحظه هستند و گروهي از مسائلي كه با داده هاي ناقص، كم، متناقض، مبهم يا احتمالي مورد بررسي قرار مي گيرند، مي باشند. اين مسائل با برخي يا همة موارد زير توصيف شده اند:
 دامنه اي با ابعاد گسترده  براي مساله ؛ رفتار متقابل، پيچيده ، مبهم يا رفتاري كه منشاء رياضي دارد، ميان متغيرهاي مساله و مجموعه اي از راه حل ها كه ممكن است تهي باشد يا شامل يك راه حل واحد يا (در بيشتر موارد) شامل يك مجموعه از راه حل هاي سودمند(تقريباً يكسان) باشد. علاوه بر اين (بر اساس ليستي كه در پايين نشان داده مي شود)، شبكه هاي عصبي مصنوعي به عنوان راه حل پيشنهادي مسائلي كه شامل ورودي هاي حسي انسان، مانند گفتار، بينايي و تشخيص  دستخط هستند و به نظر مي رسند. توجه داشته باشيد كه نگاشت مساله دلخوا ه با راه حل شبكة عصبي كار آساني نيست.

 2-5 كاربردهاي نمونه شبكه هاي عصبي مصنوعي
نگاهي جامع به همه كاربردهاي شبكه هاي عصبي مصنوعي (كاربردهايي كه روي آنها كار شده است يا موفقيت آميز بوده اند يا كاربردهاي تصوري) غير عملي است . با اين وجود، نگاهي به مطبوعات، مجلات علمي‌وكنفرانس ها،‌مثالهاي‌روشني را در اين زمينه فراهم مي كند. اين كاربردها عبارت اند از :
پردازش تصوير وتصاوير رايانه اي ، شامل مقايسة تصاوير، پيش پردازش، شبكه سازي و تحليل، تصوير رايانه اي (براي مثال بازبيني برد مدار)، فشرده سازي تصوير ، بينايي استريو، پردازش و درك تصاوير متغيير با زمان مي باشد.
پردازش سيگنال، شامل تحليل سيگنال و مورفولوژي است.
تشخيص الگو، شامل استخراج طرح [sau89] ، طبقه بندي و تحليل سيگنال رادار، شناسايي و تشخيص صدا، شناسايي اثر انگشت، تشخيص شاخص (حرف يا عدد) و تحليل دستخط (رايانه هاي ”notepad“) است.
پزشكي [pvg90] ، شامل تحليل سيگنال الكتروكارديوگراف و فهم و تشخيص بيماريهاي گوناگون و پردازش تصاوير پزشكي است.
سيستم هاي نظامي ، شامل مين در زير دريا, طبقه بندي اغتشاشات رادار و تشخيص مكالمه رمزي است.
سيستم هاي مالي ، شامل بررسي سهام بازار [rzf94]، تعيين قيمت واقعي موجودي ، صدور كارت اعتبار [ott94] و امنيت تجارت [bvdbw94] خواهد بود.
طراحي ، كنترل و تحقيق ، شامل عملكرد موازي مسائل برآورد قيود (csps)، راه حل هاي فروشندة سيار، مشابه csp ها ، و كنترل روباتيك است.
هوش مصنوعي ، شامل سيستم هاي قياسي و پياده سازي سيستم هاي خبره [cal93].
سيستم هاي قدرت، شامل پيش بيني وضعيت سيستم، تشخيص حالت هاي گذرا و طبقه بندي،‌شناسايي و رفع خطا، پيش بيني بار و تشخيص ايمني مي باشد.
2-6 فوايد و معايب شبكه هاي عصبي مصنوعي
از آنجا كه شبكه هاي عصبي مصنوعي، الگوهاي محاسباتي نسبتاً جديدي هستند، مي توان گفت كه فوايد، كاربردها و روابط آن با محاسبات مرسوم هنوز كاملاً شناخته نشده است. انتظارات(بعضي ممكن است كه به آن بي جا بگويند) در اين زمينه بسيار زياد است. شبكه هاي عصبي به ويژه براي كاربردهاي واقعي ، ارتباط الگوهاي آموزش پذير مناسب هستند. عنوان اين مطلب كه شبكه هاي عصبي مصنوعي مي توانند همة مسائل ، يا حتي تمامي مسائل نگاشت را به صورت استدلال خود كار حل كنند، احتمالاً غير واقعي است.
فوايد
•    ذاتاً به صورت گسترده اي موازي،
•    امكان چشم پوشي در برابر خطا به خاطرعملكرد موازيش،
•    ممكن است به صورت تطبيقي طراحي گردد؛
•    نياز كم به ويژگي هاي گستردة مساله (غير از درون مجموعه آموزش).
معايب
•    عدم وجود قواعد صريح يا راهنمايي هاي طراحي براي كاربرد مورد نظر،
•    عدم وجود روشي عمومي براي تشخيص عمليات داخلي شبكه،
•    آموزش ممكن است مشكل يا حتي غير ممكن باشد؛
•    پيش بيني عملكرد شبكه در آينده مشكل است(تعميم).
2-7 معيارهاي مهندسي به منظور محاسبات عصبي
سؤالات اوليه
يك رهيافت مهندسي براي حل مسائل ، عبارت است از تركيب همة متغيرها و اطلاعات مناسب مساله به  گونه اي ساختار يافته، به منظور فرموله كردن يك راه حل.
سؤالات اساسي كه در اين زمينه مطرح مي گردند، عبارت اند از:
1-    آيا فنون ANN براي مسائل موجود ، مفيد يا حتي عملي هستند؟ آيا مساله، يك راه حل يا تعداد بيشترين راه حل دارد؟
2-    آيا مي تواينم ساختارهاي ANN مناسب هر وضعيت را به دست آوريم يا اصلاح كنيم و در صورت لزوم، ANN را آموزش دهيم(پارامترها را تعيين كنيم)؟
3-    آيا ابزار رسمي و اكتشافي كه بتوان براي تعيين كردن ويژگي هاي راه حل ANN به كار برد، وجود دارد؟(مثلاً ، تركيب محاسباتي اتخاذ شده براي روند تحليل چيست؟)
روش هاي مهندسي عصبي: جايگزيني طراحي با آموزش
به طور نمونه، فرايند كلاسيك مهندسي «طراحي» ، شامل كاربردي اصولي از قواعد علمي و رياضي به منظور طرح سيستمي كه با يك مجموعه مشخصات سرو كار دارد، مي باشد. از اين جهت ممكن است، طراحي شامل قضاوت، بينش و احتمالاً تكرار باشد. فرايند«آموزش»، به عبارت ديگر ، به صورت نمونه شامل برخي روش هاي تعليم دادن است تا در موقعي كه سيستم با مشخصاتي مواجه مي گردد، آن را به انجام رفتارهايي وادار سازد. اغلب اوقات، كاملاً اين تعليم دهي شامل تصحيح يا سازگاري پارامترهاي سيستم است، براي اينكه در تكرار يا آزمايش بعدي، پاسخ سيستم به آنچه كه مطلوب است، نزديك باشد.
مهندسي عصبي تعيين اجزاي مربوط به راه حل ANN ، شامل طراحي ANN كلي، توپولوژي هاي شبكه ، پارامترهاي يك واحد و يك روندمرحله به مرحله آموزش (يادگيري) را جايگزين طرح هاي مهندسي كلاسيك مي كند. گرچه ممكن ست اين ارزيابي آسان به نظر برسد، ليكن به ديدگاه مهندسي (عصبي) قابل توجهي نيازمند است. وجود انتخاب هاي ممكن بسيار در توپولوژي ها و پارامترها منجر به مطالعات خسته كننده يا منجر به شبكه فاقد توان كه از لحاظ مهندسي غير عملي است، مي گردد. علاوه بر اين ، همانطور كه قبلاً ذكر گرديد، كارايي راه حل ANN بايد مشخص باشد.
2-8 مراحل مهندسي سيستم ANN
به هنگام طراحي راه حل هاي مبتني بر شبكه هاي عصبي ، سؤالات زيادي مطرح مي شود؛‌مثلاً:
آيا شبكه مي تواند به منظور انجام عمليات مورد نظر آموزش داده شود؟ آيا وجود برخي ابهامات ذاتي در مساله اي مي تواند سبب غير ممكن گرديدن حل آن شود؟
 با فرض اينكه مساله قابل حل است، چه ساختار يا توپولوژي شبكه اي مناسب است؟
 كدام يك از انواع منابع محاسباتي براي آموزش و اجراي شبكه موجوداند (زمان، حافظه، ذخيره سازي اطلاعات ، پردازشگرها)؟
در كاربردهاي واقعي ، طراحي سيستم ANN ، كاري مشكل و معمولاً همراه با تكرار و اثرات متقابل است. گرچه فراهم كردن يك روش الگوريتمي جامع و فراگير غير ممكن است، اما مراحل وابسته وساختار يافته كه در زير آمده است، انعكاس نمونة تلاش ها و كارهايي است كه در اين زمينه شده است.
بسياري از پارامترهاي طراحي ANN عبارت اند از:
1-    ساختار اتصالات دروني /توپولوژي شبكه /ساختار شبكه.
2-    خصوصيات يك واحد(ممكن است در درون شبكه و بين قسمت هاي فرعي شبكه ، مانند لايه ها متفاوت باشد).
3-    مرحله (مراحل آموزش).
4-    مجموعه هاي تست و آموزش.
5-    نمايش (هاي) ورودي / خروجي و پيش و پس پردازش.
يك فرايند اساسي طراحي مي تواند به شكل زير باشد:
مرحلة 1: طبقات، اندازه ها يا الگوهاي تحت بررسي را به منظور دستيابي ويژگي هاي ممكن(به صورتي مطلوب از نظر مقداري) ، مطالعه كنيد. اين موضوع شامل تعيين ساختار (قابليت كيفيت)، ويژگي هاي احتمالي و شناسايي اندازه هاي مشابه يا غير مشابه آن طبق خواهد بود. علاوه براين، خصوصيات ثابت يا متغيير ممكن و ويژگي هاي منابع «نويز» در اين مرحله مورد توجه قرار مي گيرند.
مرحله 2: وجود داده هاي اندازه گيري شده (ورودي) يا شاخص (پيش پردازش شده) را بررسي كنيد.
مرحله 3: به قيود مربوط به عملكرد سيستم مورد نظر و منابع محاسباتي آن توجه كنيد.
مرحله 4: به موجود بودن و كيفيت دادة آموزش و آزمايش توجه كنيد.
مرحله 5: به موجود بودن ساختارهاي شناخته شده و مناسب ANN توجه كنيد.
مرحله 6: شبيه سازي ANN را به دست آوريد.
مرحله 7: سيستم ANN را آموزش دهيد.
مرحله 8: بازدهي سيستم ANN را با به كار بردن مجموعه (هاي) آزمايش شبيه سازي كنيد.
مرحله 9: مراحل پيشين را تكرار كنيد تا به بازده مطلوب برسيد.
2-9 توپولوژي هاي شبكه و خصوصيات
در نگرش كمي به توپولوژي ها و ساختارهاي شبكه براساس توابع اتصالات دروني هر واحد، مي توانيم مفاهيم چندي را مشخص كنيم:
1-    شبكه هاي بازگشتي
2-    شبكه هاي غير بازگشتي
3-    شبكه هاي لايه لايه ، متوالي يا ساير ساختارهاي شبكه اي متشابه
4-    ساختارهاي به هم پيوستة رقابتي
گونه هاي 1و2 متقابلاً مجزا هستند؛ با اين وجود، گونه هاي 3و4 ممكن است هم ساختارهاي بازگشتي و هم غير بازگشتي را به كار برند.[fie94] عميقاً اين موضوع را كه مشتمل بر ايجاد «لايه ها» و «قطعه ها» و تشخيص دادن اتصالات دروني متقارن از غير متقارن است، بررسي مي كند.
 
فصل 3
3-1 چشم انداز طرح شناسي
براي درك بيش تر مسأله طرح شناسي فعاليتي كه براي اكثر مردم مشترك است يعني بينايي را در نظر بگيريد. بخش عمده اطلاعات كه ما جذب مي كنيم ( به عبارت ديگر به سيستم بيولوژيكي شبكه‌هاي عصبي ما وارد مي شود ) به صورت طرح به ما عرضه مي گردد . متني كه اكنون مطالعه مي كنيد طرح هاي متنوع و پيچيده‌اي را به صورت رشته‌هاي حروف به شما نشان مي دهد . قبل از اين كه درگير فهم جملات شويم ، سيستم بينايي بايد مسأله شناسايي طرح‌ها را حل كند، به عبارت ديگر لكه‌هاي كج و معوج مركب منقوش بر اين صفحه را به عنوان حروف شناسايي كند.
با وجود اين شناخت حروف يكي از مسائل نسبتاً ساده «طبقه‌بندي» محسوب مي گردد. اين مسئله را مي‌توان با استفاده از روش تطبيق الگوها حل كرد .
حال فرض كنيد خط متن ما تغيير كند . اگر براي خط جديد الگوهاي مناسب نداشته باشيم روش طبقه‌بندي ما به احتمال زياد به سختي شكست خواهد خورد .
شناسايي متون تنهاا يكي از نمونه مسئله‌هاي طرح شناسي است . دامنه اين شكل هنگامي كه ما توجه خود رابه ساير زمينه‌هاي طرح شناسايي چون شناسايي صداها و حتي شناسايي روند سهام بازار بورس معطوف مي كنيم بسيار گسترده‌تر مي شود .
 


منابع :


منابع

آشنايي با شبكه هاي عصبي /آر.بيل وتي.جكسون/ دانشگاه صنعتي شريف

شبكه هاي عصبي مصنوعي /رابرت جي . شالكف/دانشگاه شهيد چمران اهواز

 

طراحی سایت : سایت سازان